Tree lattice subgroups
نویسندگان
چکیده
Let X be a locally finite tree and let G = Aut(X). Then G is naturally a locally compact group. A discrete subgroup Γ ≤ G is called an X-lattice, or a tree lattice if Γ has finite covolume in G. The lattice Γ is encoded in a graph of finite groups of finite volume. We describe several methods for constructing a pair of X-lattices (Γ′,Γ) with Γ ≤ Γ′, starting from ‘edgeindexed graphs’ (A′, i′) and (A, i) which correspond to the edge-indexed quotient graphs of their (common) universal covering tree by Γ′ and Γ respectively. We determine when finite sheeted topological coverings of edge-indexed graphs give rise to a pair of lattice subgroups (Γ,Γ′) with an inclusion Γ ≤ Γ′. We describe when a ‘full graph of subgroups’ and a ‘subgraph of subgroups’ constructed from the graph of groups encoding a lattice Γ′ gives rise to a lattice subgroup Γ and an inclusion Γ ≤ Γ′. We show that a nonuniform X-lattice Γ contains an infinite chain of subgroups Λ1 ≤ Λ2 ≤ Λ3 ≤ . . . where each Λk is a uniform Xk-lattice and Xk is a subtree of X. Our techniques, which are a combination of topological graph theory, covering theory for graphs of groups, and covering theory for edge-indexed graphs, have no analog in classical covering theory. We obtain a local necessary condition for extending coverings of edge-indexed graphs to covering morphisms of graphs of groups with abelian groupings. This gives rise to a combinatorial method for constructing lattice inclusions Γ ≤ Γ′ ≤ H ≤ G with abelian vertex stabilizers inside a closed and hence locally compact subgroup H of G. We give examples of lattice pairs Γ ≤ Γ′ when H is a simple algebraic group of K-rank 1 over a nonarchimedean local field K and a rank 2 locally compact complete Kac-Moody group over a finite field. We also construct an infinite descending chain of lattices . . .Γ2 ≤ Γ1 ≤ Γ ≤ H ≤ G with abelian vertex stabilizers.
منابع مشابه
Convex $L$-lattice subgroups in $L$-ordered groups
In this paper, we have focused to study convex $L$-subgroups of an $L$-ordered group. First, we introduce the concept of a convex $L$-subgroup and a convex $L$-lattice subgroup of an $L$-ordered group and give some examples. Then we find some properties and use them to construct convex $L$-subgroup generated by a subset $S$ of an $L$-ordered group $G$ . Also, we generalize a well known result a...
متن کاملOn fuzzy convex lattice-ordered subgroups
In this paper, the concept of fuzzy convex subgroup (resp. fuzzy convex lattice-ordered subgroup) of an ordered group (resp. lattice-ordered group) is introduced and some properties, characterizations and related results are given. Also, the fuzzy convex subgroup (resp. fuzzy convex lattice-ordered subgroup) generated by a fuzzy subgroup (resp. fuzzy subsemigroup) is characterized. Furthermore,...
متن کاملAlternating Regular Tree Grammars in the Framework of Lattice-Valued Logic
In this paper, two different ways of introducing alternation for lattice-valued (referred to as {L}valued) regular tree grammars and {L}valued top-down tree automata are compared. One is the way which defines the alternating regular tree grammar, i.e., alternation is governed by the non-terminals of the grammar and the other is the way which combines state with alternation. The first way is ta...
متن کاملTREE AUTOMATA BASED ON COMPLETE RESIDUATED LATTICE-VALUED LOGIC: REDUCTION ALGORITHM AND DECISION PROBLEMS
In this paper, at first we define the concepts of response function and accessible states of a complete residuated lattice-valued (for simplicity we write $mathcal{L}$-valued) tree automaton with a threshold $c.$ Then, related to these concepts, we prove some lemmas and theorems that are applied in considering some decision problems such as finiteness-value and emptiness-value of recognizable t...
متن کاملFUZZY SUBGROUPS AND CERTAIN EQUIVALENCE RELATIONS
In this paper, we study an equivalence relation on the set of fuzzysubgroups of an arbitrary group G and give four equivalent conditions each ofwhich characterizes this relation. We demonstrate that with this equivalencerelation each equivalence class constitutes a lattice under the ordering of fuzzy setinclusion. Moreover, we study the behavior of these equivalence classes under theaction of a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Groups Complexity Cryptology
دوره 3 شماره
صفحات -
تاریخ انتشار 2011